Upcoming Webinars
Check back again soon!
Previous Webinars
- ACEI or ARB / Potassium Sparing Diuretic drugs: webinar recording, detailed description
- Analyzing and Evaluating Drug-Drug Interaction Alert Data from Epic Electronic Health Records: webinar recording, detailed description
- Drug interactions involving drugs used to treat COVID-19: webinar recording, detailed description
- Colchicine and CYP3A4 / PGP inhibitors: webinar recording, detailed description
- SSRI or SNRI / Thiazide Diuretics : webinar recording, detailed description
- Successful Deployment of Contextualized Drug-Drug Interactions CDS: webinar recording, detailed description
- Tamoxifen Drug Interactions: A Critical Evaluation of the Evidence and Guidance for Patient Care: webinar recording, detailed description
- Tizanidine / CYP1A2 drug interactions : webinar recording, detailed description
- Using existing Cerner (TM) tools to monitor and improve drug-drug interaction warnings: webinar recording, detailed description
- Warfarin / NSAID drug interactions: webinar recording, detailed description
- Warfarin / Antidepressant drug interaction: webinar recording, detailed description
Our Mission
This project seeks to provide a necessary bridge between electronic health records and healthcare providers in the clinical decision making process. Providing information to clinicians about drug-drug interaction warnings based on known attributes of the medications involved and patient specific factors is our goal. In essence, we seek to get the right information, at the right time, through the right channel, and the right format to clinicians. The construction of meaningful DDI algorithms will permit healthcare providers, organizations, and systems to provide useful decision support to reduce patient harm due to these drug-drug interactions.
- Click to view our current meaningful DDI algorithms
- Click to view our recommended approaches to selecting, representing, and designing DDI clinical decision support
Objectives
Individualize drug-drug interaction alerts to individual patient circumstances so that physicians, pharmacists, and other healthcare providers will receive fewer alerts, leading to greater attention to alerts when the patient is at risk for harm due to a DDI.
Provide a comprehensive assessment of the evidence for DDIs and factors that affect the risk of harm from specific drug combinations.
The necessity for contextual DDI warnings
DDIs can pose a major risk to health, but are preventable because of known consequences from exposure to interacting medications. DDIs are responsible for 5-14% of adverse drug reactions among hospitalized patients and occur in up to 13% of elderly ambulatory patients.
Alert fatigue
Excessive exposure to irrelevant alerts is thought to decrease the users’ sensitivity to alerts; over 90% of DDI alerts seen by prescribers are overridden. The lack of specificity may to be due to alerts failing to account for contextual information, leading prescribers to bypass the alert and/or search for the relevant data if needed. Alternatively, there are many situations in which a particular alert might not be clinically relevant to a patient or situation.
Need for greater specificity for warnings based on drug attributes
Advances in electronic health records are opening up new possibilities for alerts that account for dose, route of administration, duration of treatment, care setting.
Need to incorporate patient-level factors in decision making
Because patient data is being captured in real-time, algorithms can be constructed to query the most recent laboratory tests, physiological status, commodities, and other risk factors to assess the likelihood of harm at the time of prescribing.
Research
We recently published a paper testing a range of high priority contextualized drug interaction clinical decision support algorithms on real-world data: https://doi.org/10.1093/jamiaopen/ooab023
Contact Information
Email us at info@ddi-cds.org